Excellence Sharing Growth

2018. 10. 11-12 COEX Grand Ballroom, Seoul

Scroll icon
See you next year!

DEVIEW 2018 행사가 종료되었습니다.

발표 영상과 자료를 지금 확인해보세요.

WATCH VIDEOS
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진

SESSIONS

강연 목록

강연자 사진
강연 분야
  • 머신러닝
  • AI
강연 제목
Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
강연 내용
이 세션에서는 딥러닝 모델을 실제 서비스하는 방법에 대해 실제 경험을 바탕으로 노하우와 팁을 공유합니다. 업데이트된 모델을 안정적으로 배포하는 방법과 롤백, 인퍼런스 오류를 어떻게 대처할지, CPU로 서빙할지 GPU로 서빙할지, 늘어나는 트래픽을 어떻게 대처할지, 서빙을 위한 플랫폼 설계 노하우와 성능 향상을 위한 모듈화, 구현하면서 맞닥뜨렸던 문제들과 고군분투하여 찾은 노하우들 그리고 몇 주간의 삽질로 찾은 안되는 설계와 엔지니어링 측면에서 범하기 쉬운 설계 오류와 실제 성능 테스트 결과 등을 알려드립니다.
목차
1. 문제
  • 모델은 있는데 서버가 없네
  • 다른 사람들은 어떻게 제공하고 있나
2. 해결을 위한 설계 - 학습과 서빙을 위한 시스템 설계 사례
  • 인퍼런스 요청 모듈화하기
  • 어떤 플랫폼을 사용해서 서빙할까 - 인퍼런스 서빙 시스템 아키텍처
  • 인퍼런스 시스템의 라이프사이클
3. AiSP(AI Serving Platform)를 만들어 해결해보기
  • 인퍼런스 서버 만들기
  • 인퍼런스 프로트엔드 만들기
  • 딥러닝 모델 배포 플로우
  • 인퍼런스 트래픽을 컨테이너로 스케일아웃 하기
  • 모델 관리하기와 데이터 관리하기
  • 인퍼런스 예외 처리
4. 만들어진 딥러닝 서빙 플랫폼은 이런 모습
  • 노트북/특정 장비에서 띄우기
  • 네이버의 IQE, C3 플랫폼을 사용해 띄우기
5. 딥러닝 인퍼런스 성능 측정 및 모니터링
  • 성능에 나타난 인퍼런스 요청의 특징
  • 실제로 모니터링하는 지표들 살펴보기
강연자
현동석 양은숙
강연자 사진
강연 분야
  • 머신러닝
  • AI
강연 제목
인공지능이 인공지능 챗봇을 만든다
강연 내용
"언제까지 직접 눈으로 클러스터링할래? 언제까지 밤새 감으로 파라미터 튜닝할래?" AutoML과 자연어처리 중 특히 Chatbot과의 결합으로 데이터만 있으면 스스로 인간의 언어를 학습하고, 보다 정확한 대화모델을 만들어내는 가능성이 현실이 되는 과정을 소개하고자 합니다. 사용자로부터 입력된 여러 쌍의 QA 데이터를 클러스터링부터 여러 모델에 사용될 파라미터 최적화, 개별 모델 성능 평가 그리고 여러 모델 간의 앙상블 가중치 자동설정 후 처음 주어진 데이터로 최적의 챗봇 모델 최종 제안 및 서비스까지 one-click으로 이루어지는 AutoML을 공유하고, 더 넓게는 챗봇이 아닌 다른 NLP분야에서도 적용 가능한 AutoML의 가치를 나누고자 합니다.
목차
  • 스스로 언어를 배우는 인공지능 만들기 : AutoML과 NLP/Chatbot 개념 소개
  • 우리 챗봇의 말하기 실력은 몇 점? : Chatbot 자동 평가 프로세스
  • 말뭉치 줄게, 챗봇 다오 : Chatbot 자동학습 프레임워크
  • 실제 클러스터링 결과, 모델 성능 및 상용 서비스 현황 공유
대상
주어진 문장을 보다 적절한 벡터공간에 표현하고자 하는 노력, 인공지능 모델에게 사람의 언어를 더 잘 가르쳐주고자 하는 노력, 그리하여 사람처럼 자연스럽고 정확하게 대답할 수 있는 챗봇을 만들고자 노력 중인 개발자분들에게 도움이 될 수 있길 기대합니다.
강연자
이재원
강연자 사진
강연 분야
  • 인프라
  • 성능
  • 기타
강연 제목
대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler in IPVS, Linux Kernel
강연 내용
수 천개의 컨테이너로 구성된 대형 컨테이너 클러스터 Platform 에서, Network Load Balancing 은 아주 복잡한 문제 중 하나입니다. 대용량의 Network 트래픽을 컨테이너들로 분산 시키기 위해 많은 수의 Load Balancer 를 구축하고 이를 유기적으로 연결시켜 효율적인 Balancing, High Availability 등을 보장해줘야 하지만, 컨테이너 클러스터 Platform 환경에서는 몇 가지 문제에 직면하게 됩니다. - Container 는 Life Cycle의 특성 상 생성/삭제가 매우 빈번하기 때문에 Load Balancer에 이를 동적으로 반영할 수 있어야 합니다. - 한 개, 또는 여러 개의 Load Balancer가 Down 되어도 이 곳을 경유하던 Network Connection들이 유실되어서는 안됩니다. 이 Connection들은 다른 정상적인 Load Balancer에서 문제 없이 처리되어야 합니다. 이를 위하여 각각의 Load Balancer 가 모든 Connection 정보를 유지하고 있어야 합니다. - 물론, 대용량의 Traffic의 효율적인 분산도 보장되어야 합니다. 이러한 문제들을 풀기 위해서 Linux Kernel 의 Software Load Balancer 인 IPVS 에 Maglev Hashing Scheduler 라는 Module을 개발하여 Contribution 하였고, 이를 사용하여 네이버 서비스 컨테이너들로의 부하를 분산하는 Load Balancer 를 운영하고 있습니다. 이 세션에서는 위 문제들을 해결하기 위해 했던 고민들과 Linux Kernel v4.18 부터 포함되는 IPVS Maglev Hashing Scheduler의 특징을 소개하고, 대형 컨테이너 클러스터에서 어떻게 효율적이고 고가용성을 갖는 Network Load Balancer 를 구축하였는지 등을 공유합니다.
강연자
송인주
강연자 사진
강연 분야
  • 모바일
  • AR
  • 테크 스타트업
강연 제목
printf("Hello, AR"); //세상을 바꾸는 새로운 눈
강연 내용
가상과 현실의 동시 경험을 제공하는 AR 기술의 작동원리는 크게 규칙적인 디지털 표식/패턴을 인식하는 마커 방식과 이미지/오브젝트 형태 등을 인식하는 마커리스 방식으로 구분됩니다. 이러한 인식기술에 컨텐츠 (3D,영상,이미지 등)을 표시하기 위한 그래픽 렌더링 기술, 사용자의 입출력 정보와 디바이스의 센서 (가속,자이로,근접,밝기,모션) 정보 등을 최종적으로 카메라에 연출하는 영상 합성기술 등이 더해져서 AR이 작동하게 됩니다. 본 세션에서는 복잡한 AR 기술에 조금 더 쉽게 접근하기 위한 정보와 국내 최초로 AR서비스를 개발하면서 겪은 시행착오, 이를 통해 얻게 된 인사이트들을 공유드리고자 합니다.
목차
1. VR(Virtual reality)속 AR(Augment reality)
2. AR은 우리의 삶에 어떻게 녹아 있는가?
  • 시장규모 및 전망
  • 소비기반의 AR : 커머스, 네비게이션, 게임, 교육 등
  • 생산기반의 AR : 제조, 건축, 의료 등
3. AR 기술 구현의 한계
  • 개발 측면 : 3D 관련 지식, AR 개발도구 & 문서, 필수인력
  • 인프라 측면 : 디바이스, 네트워크
  • 서비스 측면 : BM 확장, 단순 마케팅 수단
4. AR 구현을 돕는 다양한 도구들
  • 비개발자 : wiarframe, Snapchat Lens Studio, Facebook AR Studio
  • 개발자 : 3D 변환 API, 다양한 AR SDK
5. AR 구현 시 겪게되는 경험 공유
  • 용어부터 어려운 기반 지식 : VIO, 6DoF, Light Estimation, SLAM, PBR, ToF
  • 기술응용에 필요한 학습비용(ARKit, ARCore 등)
  • 표준 파일 포맷 부재 : OS(iOS, Android)별 상이한 3D 파일 포맷
  • 서비스 품질 수준
  • User Experience : 단순함, 피로감, 2D와의 차별화
6. 가까운 미래에 만나게 될 AR 기술 및 서비스
  • Quick Look
  • Object Scan, Save, Detect
  • AR Cloud : Cloud Anchor, AR 명함, 건축가를 위한 AR
  • AR + Vision + Machine Learning
대상
  • AR 서비스에 대한 새로운 비지니스 모델을 고민하는 기획자/개발자/디자이너 누구나
  • AR 서비스 개발에 흥미를 갖는 개발자
강연자
방현우
전체 Schedule 보러가기

PARTNERS

  • baidu
  • carnegie mellon university
  • logo_coupang
  • google
  • hyper connect
  • imply
  • labs
  • labs europe
  • line
  • lunit
  • naver
  • naver business platform
  • nvidia
  • samsunginternet
  • superb ai
  • theori
  • udacity
  • urbanbase

LOCATION

장소
코엑스 그랜드볼룸 (Coex Grand Ballroom)
주소
서울 강남구 영동대로 513 코엑스, (지번) 삼성동 159 코엑스
연락처
02-6000-0114

그랜드볼룸은 봉은사 맞은편 코엑스 1층 북문 쪽에 위치해 있습니다.
지하철 이용 시 9호선 봉은사역 7번 출구를 이용하시거나 삼성역 6번 출구를 이용하시면 됩니다.

교통정보 더보기 >

DEVIEW 2018에 관하여 더 궁금한 점이 있다면?

FAQ 보러가기