Excellence Sharing Growth

2018. 10. 11-12 COEX Grand Ballroom, Seoul

Scroll icon
See you next year!

DEVIEW 2018 행사가 종료되었습니다.

발표 영상과 자료를 지금 확인해보세요.

WATCH VIDEOS
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진

SESSIONS

강연 목록

강연자 사진
강연 분야
  • 모바일
  • 성능
강연 제목
책에서는 맛볼 수 없는 HTML5 Canvas 이야기 ​(부제: Web Worker를 이용해 캔버스 성능을 극대화하기)
강연 내용
HTML5를 선도하였던 기술 < canvas > 에 대해서 다룹니다. 캔버스는 등장 이후 급속도로 성장해왔고, 이제 브라우저에서 빠질 수 없는 기능이 되었습니다. 전체 웹 페이지의 30% 이상이 캔버스를 사용하고 있으며 캔버스의 성능개선은 웹 개발자에게 매우 중요한 과제가 되었습니다. 본 세션에서는 캔버스의 성능을 개선할 수 있는 새로운 방법들에 대해서 다룹니다. 특히 최근 Chrome 69에 추가 된 OffscreenCanvas API를 사용하여 렌더링에 걸리는 부하를 메인 스레드에서 Web Worker로 위임함으로써 캔버스를 개선할 수 있는 방법과 내부 구현 원리에 대해 상세히 설명합니다. 나아가 국내에서는 잘 알려지지 않았지만 브라우저 내부에 구현되었던 몇몇 API들과 앞으로 캔버스가 나아갈 방향 (웹 표준과 브라우저 구현 관점에서)를 공유합니다.
목차
1. Motivation
  • HTML5 Canvas의 등장
  • 웹 분야에서 Canvas의 위치
  • 많은 개선에도 불구하고 Canvas가 느린 이유

2. DOM과 Canvas 애니메이션의 차이점
  • Retained Mode VS Immediate Mode
  • DOM animation VS Canvas animation
  • 장점과 단점

3. 기존의 성능 개선 사례 및 문제점 분석
  • 기존 사례1. < canvas >와 drawImage를 이용한 성능 개선
  • 기존 사례2. Canvas Proxy와 Canvas In Workers
  • 기존 사례3. WebGL in Web Worker
  • 기존의 문제점은 무엇인가?
4. 새로운 OffscreenCanvas API 적용하기
  • 이미지 복사 최소화 (Zero-copy image)
  • Trasnferrable ImageBitmap을 활용한 Main thread 동기화 방식
  • Compositor에 직접 commit하는 방식
  • 기존 대비 개선 된 성능 비교

5. 사례 연구
  • Three.js in a worker
  • Multiple WebGL views
  • W3C WebXR spec
  • Google Map

6. 그 밖에 알려지지 않은 API 및 연구과제들
  • Path2D
  • HitRegion
  • Color Space
  • Input Events in Workers

7. 브라우저 구현 현황

대상
  • 성능 향상이 필요한 Canvas2D 개발자
  • WebGL / WebXR (AR + VR) 개발자
  • Web Front-End 개발자
  • 웹 표준 및 브라우저 기술에 관심 많은 개발자
  • 기타 모든 개발자
강연자
방진호
강연자 사진
강연 분야
  • 모바일
  • 테크 스타트업
  • 머신러닝
  • AI
강연 제목
모바일 환경에서 실시간 Portrait Segmentation 구현하기
강연 내용
최근 딥러닝의 발전으로 전에 없던 다양한 서비스들이 개발되고 있습니다. 그러나 아직 대부분의 딥러닝 기반 서비스는 기술적 한계로 인해 서버 상에 배포되는 경우가 많고, 이런 서버 배포 모델은 통신에 드는 비용으로 인해 실시간 서비스에 적용하기 어려운 문제가 있습니다. 본 세션에서는 하이퍼커넥트에서 서비스 중인 아자르에 모바일 상에서 구동 가능한 실시간 portrait segmentation 기능을 개발하여 적용하기까지 사용했던 기술과 경험을 공유하려 합니다. Portrait segmentation은 사진 혹은 영상 속에서 전경과 배경을 구분해내는 기술로, 세션에서 소개할 방법들을 통해 Galaxy J7과 같은 저가형 휴대폰에서도 single-core로 30 프레임 영상의 전경과 배경을 분리하는 애플리케이션을 만들 수 있었습니다. 세션 내용은 모델의 크기와 추론 시간을 줄일 수 있는 일반적 기술에 대한 소개와 실제로 TFLite를 사용한 모바일 애플리케이션을 만들며 겪은 시행착오 위주로 구성됩니다. 보다 자세한 내용이 궁금하신 분들은 하이퍼커넥트 기술 블로그(https://hyperconnect.github.io)를 참고 부탁드립니다.
목차
1. 모바일 딥러닝
  • 모바일 딥러닝의 현재
  • 데모 프로젝트를 상용 서비스로 만들때의 유의점
    • 2. Portrait Segmentation 101
      • Portrait Segmentation을 어디에 쓸 수 있을까?
        • 3. 추론(inference) 시간을 줄이려면?
          • Quantization
          • Factorization
          • Distillation
          • Model design principles
            • 4. Single-core로 30프레임 성능을 내기까지
              • TFLite 최적화 구현 활용하기
              • TFLite 구현시 마주하는 함정들과 해결법
              • SIMD로 bilinear upsampling 구현하기
강연자
서석준
강연자 사진
강연 분야
  • 테크 스타트업
  • 빅데이터
  • AI
강연 제목
병리 AI 제품 개발을 위한 데이터 관리 및 좌충우돌 삽질기
강연 내용
의료 데이터에 AI를 접목시키는 다양한 시도가 이루어지고 있고 국내에서도 인허가를 통해 실제 상용화의 길이 열리고 있습니다. 루닛에서는 흉부 영상의학, 유방 영상의학, 심장 영상의학 분야뿐만 아니라 병리 영상도 연구하고 있습니다. 본 세션에서는 머신러닝 연구자가 아닌 B2C 서비스 개발 출신 백엔드 개발자의 입장에서 병리 AI 제품을 개발하며 겪은 몇 가지 핵심 컨셉에 대해 이야기 하려고 합니다. 기술적 난이도가 높은 문제보다는 개발자 입장에서는 생소한 병리학이라는 도메인을 접하면서 생각의 전개를 어떻게 가져갔는지, 어떤 고민과 문제가 있었는지를 공유할 예정입니다.
목차
1. 병리 AI란?
2. 데이터 컨셉과 구조
병리 데이터는 특성상 대용량 이미지 파일을 관리해야 하고 이 데이터를 기반으로 개발을 할 때 고려해야 할 다양한 요소들이 존재합니다. 주어졌던 데이터와 그 데이터의 hierarchy를 어떻게 가져갔는지를 설명하려고 합니다.
3. Openslide와 Openseadragon
오픈소스인 Openslide와 Openseadragon을 이용하여 Whole Slide Image 뷰어를 지원하고 이 위에 annotation과 visualization을 할 수 있도록 개발되었습니다. 각각의 특성과 유스 케이스를 설명하려고 합니다.
4. 병리 AI Projects
실제 개발 중인 제품 구현에 활용된 기술들에 대한 소개와 각각 어떻게 적용했는지, 적용하면서 발생했던 문제를 어떻게 해결했는지에 대해 공유하려고 합니다.
5. 의료 AI 서비스를 개발하는 개발자
강연자
이경원
강연자 사진
강연 분야
  • 모바일
  • AR
  • 테크 스타트업
강연 제목
printf("Hello, AR"); //세상을 바꾸는 새로운 눈
강연 내용
가상과 현실의 동시 경험을 제공하는 AR 기술의 작동원리는 크게 규칙적인 디지털 표식/패턴을 인식하는 마커 방식과 이미지/오브젝트 형태 등을 인식하는 마커리스 방식으로 구분됩니다. 이러한 인식기술에 컨텐츠 (3D,영상,이미지 등)을 표시하기 위한 그래픽 렌더링 기술, 사용자의 입출력 정보와 디바이스의 센서 (가속,자이로,근접,밝기,모션) 정보 등을 최종적으로 카메라에 연출하는 영상 합성기술 등이 더해져서 AR이 작동하게 됩니다. 본 세션에서는 복잡한 AR 기술에 조금 더 쉽게 접근하기 위한 정보와 국내 최초로 AR서비스를 개발하면서 겪은 시행착오, 이를 통해 얻게 된 인사이트들을 공유드리고자 합니다.
목차
1. VR(Virtual reality)속 AR(Augment reality)
2. AR은 우리의 삶에 어떻게 녹아 있는가?
  • 시장규모 및 전망
  • 소비기반의 AR : 커머스, 네비게이션, 게임, 교육 등
  • 생산기반의 AR : 제조, 건축, 의료 등
3. AR 기술 구현의 한계
  • 개발 측면 : 3D 관련 지식, AR 개발도구 & 문서, 필수인력
  • 인프라 측면 : 디바이스, 네트워크
  • 서비스 측면 : BM 확장, 단순 마케팅 수단
4. AR 구현을 돕는 다양한 도구들
  • 비개발자 : wiarframe, Snapchat Lens Studio, Facebook AR Studio
  • 개발자 : 3D 변환 API, 다양한 AR SDK
5. AR 구현 시 겪게되는 경험 공유
  • 용어부터 어려운 기반 지식 : VIO, 6DoF, Light Estimation, SLAM, PBR, ToF
  • 기술응용에 필요한 학습비용(ARKit, ARCore 등)
  • 표준 파일 포맷 부재 : OS(iOS, Android)별 상이한 3D 파일 포맷
  • 서비스 품질 수준
  • User Experience : 단순함, 피로감, 2D와의 차별화
6. 가까운 미래에 만나게 될 AR 기술 및 서비스
  • Quick Look
  • Object Scan, Save, Detect
  • AR Cloud : Cloud Anchor, AR 명함, 건축가를 위한 AR
  • AR + Vision + Machine Learning
대상
  • AR 서비스에 대한 새로운 비지니스 모델을 고민하는 기획자/개발자/디자이너 누구나
  • AR 서비스 개발에 흥미를 갖는 개발자
강연자
방현우
강연자 사진
강연 분야
  • 빅데이터
강연 제목
C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
강연 내용
네이버의 다양한 대용량 데이터를 다루기 위해 수백명이 함께 사용하는 사내 공용의 하둡 클러스터인 C3가 운영되고 있습니다. 일반적으로 하둡은 MapReduce, Spark와 같은 데이터 처리를 위한 플랫폼으로 알려져 있습니다. 하지만, C3에서는 HBase, Kafka, Zeppelin 등의 다양한 앱을 실행하거나 사용자가 직접 작성한 Docker 이미지를 실행할 수 있는 환경을 제공합니다. 이로써 C3는 데이터 처리뿐 아니라 다양한 용도로 사용되고 있습니다. 예를 들어 Zeppelin을 이용해 데이터를 분석하거나, 처리된 데이터를 서빙하는 웹서버를 구동시킬 수도 있습니다. 사실상 데이터 처리부터 분석, 서빙까지의 모든 작업이 하둡 클러스터에서 가능합니다. 본 세션에서는 이를 위해 활용된 YARN, Apache Slider, Docker 대해 소개하며 어떻게 이를 적용하였는지 설명합니다. 또한, 그동안 발생했던 다양한 이슈들을 사례를 들어 설명하고 해결 방법을 공유합니다.
목차
1. C3 소개
  • 데이터 처리를 위한 하둡 클러스터로 시작
  • 다양한 앱, Docker 이미지 실행 환경 제공
2. 어떻게?
  • Hadoop YARN, Apache Slider, Docker
3. 고려사항 / 이슈
  • Containerization
  • Resource Isolation
  • Reliability
  • Scheduling
  • Upgrade/Reconfigure
  • Usability
4. 앞으로는?
강연자
남경완
전체 Schedule 보러가기

PARTNERS

  • baidu
  • carnegie mellon university
  • logo_coupang
  • google
  • hyper connect
  • imply
  • labs
  • labs europe
  • line
  • lunit
  • naver
  • naver business platform
  • nvidia
  • samsunginternet
  • superb ai
  • theori
  • udacity
  • urbanbase

LOCATION

장소
코엑스 그랜드볼룸 (Coex Grand Ballroom)
주소
서울 강남구 영동대로 513 코엑스, (지번) 삼성동 159 코엑스
연락처
02-6000-0114

그랜드볼룸은 봉은사 맞은편 코엑스 1층 북문 쪽에 위치해 있습니다.
지하철 이용 시 9호선 봉은사역 7번 출구를 이용하시거나 삼성역 6번 출구를 이용하시면 됩니다.

교통정보 더보기 >

DEVIEW 2018에 관하여 더 궁금한 점이 있다면?

FAQ 보러가기