Excellence Sharing Growth

2018. 10. 11-12 COEX Grand Ballroom, Seoul

Scroll icon
See you next year!

DEVIEW 2018 행사가 종료되었습니다.

발표 영상과 자료를 지금 확인해보세요.

WATCH VIDEOS
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진

SESSIONS

강연 목록

강연자 사진
강연 분야
  • 검색
  • 머신러닝
  • AI
강연 제목
Fashion Visual Search
강연 내용
네이버에서는 정확한 정보를 찾기 위해 이미지를 분석하는 다양한 방법을 연구해 왔습니다. 저희는 그 중에서도 패션 이미지 검색에 대해 이야기 해보려 합니다. 패션 검색은 도메인 특성상 기존의 유사이미지를 찾아주는 문제와 접근 방법이 조금 다릅니다. 사용자들은 '정확하게 똑같은 의류' 뿐만 아니라 '유사하지만 스타일이 다른 의류' 이미지 또한 찾고 싶어하기 때문이죠. 이번 세션에서는 패션 검색이 어려운 이유와 그 문제를 어떻게 풀어가고 있는지, 그리고 앞으로의 도전 과제는 무엇인지에 대해 저희가 고민하고 있는 것들을 공유하려고 합니다.
목차
Background
  • 이미지 검색과 이미지 분류
  • 패션 이미지 검색이란?
  • 네이버/라인 서비스 적용 사례
Fashion Visual Search System
  • 무엇이 패션 검색을 어렵게 만드나?
  • 패션 검색 시스템 레시피
성능 끌어올리기 전략: 악마는 디테일에 있다
  • 도메인을 고려하고 있는가?
  • 제한 검색, 득과 실
서비스 딜리버리: Pitfalls
  • 규모의 함정 - 당신이 만든 서비스는 별 볼 일 없다
  • 의도의 함정 - 그 사람은 패션 검색을 하지 않았다
  • 의존성의 함정 - MLaaS, Module & Component
Search-by-Attribute: Beyond Snap & Search
  • 잘 찾는 것이 잘 못 찾는 것이라는 이상한 이야기
  • Fake feature vector - Generative model의 새로운 발견
  • 사용자가 원하는 스타일 속성을 더하여 검색하기 (text -> image -> feature level manipulation)
강연자
최승권 Jon Almazan
강연자 사진
강연 분야
  • 인프라
  • 기타
강연 제목
쿠팡 서비스 Cloud Migration을 통해 배운 것들
강연 내용
지난 몇 년간 쿠팡 서비스는 마이크로 서비스 아키텍쳐로의 변경과 클라우드 환경으로 이전 등으로 인해 많은 변화를 겪었습니다. 특히 2017년에는 단 기간에 수백개의 마이크로 서비스를 클라우드로 이전하면서 새롭고 다양한 문제들을 만났고 이를 극복하기 위해 많은 노력을 했습니다. 이번 세션에서는 무중단으로 클라우드 환경으로 이전하기 위해서 준비 했던 계획들, 이전하면서 발생했던 예상하지 못했던 문제들, 클라우드 환경에서 새롭게 만난 문제들과 다양한 장애들 그리고 이러한 문제들을 해결하기 위해 쿠팡 내부에서 만들어낸 해결책과 아직 풀지 못한 고민에 대해서 이야기 나누려고합니다.
목차
1. 클라우드 이전 계획 및 선행 프로젝트
  • 이전 원칙 : Availability, Scalability, Performance
  • 이전 방법 : Roman Riding
  • Continer Service 도입
  • CI / CD pipeline
  • Log Collecting / Monitoring / Alert
  • Performance Visualize
  • 인프라 및 보안
2. 클라우드 이전 과정
  • Roman Riding : Database
  • Roman Riding : Application
  • Database 의 확장성
  • 예상치 못한 문제들 : Load Balancer
  • 예상치 못한 문제들 : Storage
  • 예상치 못한 문제들 : 각종 Split Brain 상황
  • 비용 최적화 프로젝트
  • Auto Scaling 과 장애
3. 아직 풀지 못한 문제들
  • 복잡해지는 서비스와 전파되는 장애
  • 12 Factors App
  • 테스팅 테스팅 테스팅
대상
  • AWS 등 퍼블릭 클라우드 환경으로 이전을 계획 중인 분
  • 클라우드 환경에서 개발 할 때 주의 해야하는 것들에 대해 궁금 하신 분
강연자
양원석
강연자 사진
강연 분야
  • 검색
  • 성능
강연 제목
Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
강연 내용
네이버 검색에서는 하루에도 수십억 건씩 발생하는 사용자 검색 request를 항상 원활하게 처리하기 위해서 많은 노력을 하고 있습니다. 이렇게 대용량 트래픽을 1년 365일 무중단으로, 장애 없이, 그리고 low latency까지 보장하면서 운영하려면 어떤 방법이 필요할까요? 이번 세션에서는, 네이버 검색시스템에서 지금까지 겪어왔던 고민과 해결책들을 소개하고자 합니다. 시스템의 상태를 정확히 파악하기 위해서 새로운 가용량 지표를 개발하고, 경보 피로를 줄일 수 있는 anomaly detection 방법을 연구하고, SRE 문화를 도입하는 등 많은 경험을 쌓아왔습니다. 이러한 과정에서 얻은 노하우들과 더불어 그동안 맞닥뜨렸던 다양한 검색 이벤트들도 함께 공유해드리겠습니다. ​ "월드컵 한국 vs 독일 경기 당시 어떤 패턴의 검색 요청이 들어왔을까?" "아시안게임 남자축구 금메달이 확정되는 순간 네이버 검색시스템에서는 무슨 일이 일어났을까?" "규모 5.8의 지진이 일어났을 때 검색시스템이 감당해야 하는 트래픽은 얼마일까?" "야간과 주말에 최소 비용으로 장애관제를 하기 위해서는 어떤 체계가 필요할까?" "200개가 넘는 검색서비스가 수만 대의 서버 위에서 동작하고 있을 때 특정 포인트의 장애를 detection할 수 있을까?"
강연자
김재헌 손주식
강연자 사진
강연 분야
  • 모바일
강연 제목
지난 1년간의 웨일 브라우저와 그 미래 (부제: 제품 매니저가 들려주는 생생한 기술/제품 이야기)
강연 내용
기술 제품 매니저가 들려주는 제품과 그것을 만드는 과정에 대한 생생한 이야기. 지난 1년간 웨일 브라우저가 한 일들, 도전한 것들, 사용자들과 함께 한 것들을 정리하고 기술에 기반한 제품을 만드는 과정에서 생긴 수많은 시행착오를 통해 얻은 것을 공유하는 자리입니다. 또한 웨일 브라우저의 향후 로드맵을 공유합니다. 추가로, 복잡도가 있는 대규모 기술 제품을 만드는 팀은 어떻게 일하고 있는가를 이야기하고 개발팀이 일하는 방식에 대한 고민을 나누려 합니다.
목차
1년간의 웨일 브라우저
  • 웨일 브라우저 현황
  • 목표했던 것들
  • 이룬 것들, 이루지 못한 것들
목표를 향한 과정 (주로 시행착오)
  • 어떻게 모바일 제품을 만들것인가? 차별화와 그 함정
  • 목표를 향한 고민/삽질들
  • 제품을 만들면서 배운 것
    • 웨일팀은 어떻게 변화하면서 일해왔는가?
      • 팀이 일하는 원칙 (애자일이 뭔가요?)
      • 앞으로의 웨일 브라우저
        • 꼭 하고싶은 일들
        • 향후 로드맵 그리고...
        대상
        • 브라우저에 대해 관심이 있고, 웹 환경 개선에 관심이 있는 개발자/사용자
        • 기술을 다루고 있지만 그것이 제품으로 만들어지는 과정, Product management에 대해 관심있는 사람
강연자
김효
강연자 사진
강연 분야
  • 머신러닝
  • AI
강연 제목
Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
강연 내용
이 세션에서는 딥러닝 모델을 실제 서비스하는 방법에 대해 실제 경험을 바탕으로 노하우와 팁을 공유합니다. 업데이트된 모델을 안정적으로 배포하는 방법과 롤백, 인퍼런스 오류를 어떻게 대처할지, CPU로 서빙할지 GPU로 서빙할지, 늘어나는 트래픽을 어떻게 대처할지, 서빙을 위한 플랫폼 설계 노하우와 성능 향상을 위한 모듈화, 구현하면서 맞닥뜨렸던 문제들과 고군분투하여 찾은 노하우들 그리고 몇 주간의 삽질로 찾은 안되는 설계와 엔지니어링 측면에서 범하기 쉬운 설계 오류와 실제 성능 테스트 결과 등을 알려드립니다.
목차
1. 문제
  • 모델은 있는데 서버가 없네
  • 다른 사람들은 어떻게 제공하고 있나
2. 해결을 위한 설계 - 학습과 서빙을 위한 시스템 설계 사례
  • 인퍼런스 요청 모듈화하기
  • 어떤 플랫폼을 사용해서 서빙할까 - 인퍼런스 서빙 시스템 아키텍처
  • 인퍼런스 시스템의 라이프사이클
3. AiSP(AI Serving Platform)를 만들어 해결해보기
  • 인퍼런스 서버 만들기
  • 인퍼런스 프로트엔드 만들기
  • 딥러닝 모델 배포 플로우
  • 인퍼런스 트래픽을 컨테이너로 스케일아웃 하기
  • 모델 관리하기와 데이터 관리하기
  • 인퍼런스 예외 처리
4. 만들어진 딥러닝 서빙 플랫폼은 이런 모습
  • 노트북/특정 장비에서 띄우기
  • 네이버의 IQE, C3 플랫폼을 사용해 띄우기
5. 딥러닝 인퍼런스 성능 측정 및 모니터링
  • 성능에 나타난 인퍼런스 요청의 특징
  • 실제로 모니터링하는 지표들 살펴보기
강연자
현동석 양은숙
강연자 사진
강연 분야
  • 검색
  • 머신러닝
  • AI
강연 제목
기계독해 QA: 검색인가, NLP인가?
강연 내용
이 세션에서는 기계 독해 (Machine Reading) 모델을 QA 엔진에 적용하는 방법론에 대한 연구, 겪었던 문제들, 연구계 및 산업의 동향, 그리고 제가 생각하는 우리가 나아가야 할 방향을 전반적으로 다룰 예정입니다. 기계독해는 주어진 문서와 문서에 대한 질문이 주어졌을 때, 문서내에서 답을 구하는 문제입니다. 기계독해는 2016년 SQuAD를 시발점으로 최근에 많은 모델과 많은 데이터 (TriviaQA, MS MARCO, 등등)가 연구 및 공개되었고, 특히 올해에는 인간수준을 넘어서는 알리바바, 마이크로소프트 및 구글의 모델이 공개되기도 했습니다. 이렇게 연구계와 업계가 많은 관심을 보인 이유가 여럿 있겠지만, 기계독해 모델이 QA (질의응답) 엔진에 직접적으로 적용이 가능한 점을 빼놓을 수 없습니다. 예를 들어, "하늘이 왜 파랄까?"라는 질문을 답하기 위해 먼저 관련된 "하늘"이라는 문서를 찾고, 기계독해 모델에 해당문서와 질문을 넣게 되면, 답이 나오는 구조입니다. 이는 문서를 찾아주기만 하는 서비스, 즉 "검색"을 넘어서서, 문서를 "이해"하고 원하는 정보를 꼭 집어서 찾아줄 수 있는 서비스가 됩니다. 다만 막대한 정보의 바다 속에서 올바른 문서를 찾는 것은 쉬운 것이 아닙니다. 따라서 기계독해를 통한 QA는 검색과 NLP의 첨단 접점이라 볼 수 있습니다. 먼저 기계독해 이전의 검색기반 QA를 간단히 설명하고, 다음은 최근에 각광받는 기계독해 (NLP) 기반 QA를 자세하게 살펴보려 합니다. 하지만 전자는 섬세함이 부족하고, 후자는 속도가 느립니다. 그래서 마지막으로는 둘을 통합하는 방법론을 다룹니다. 특히, 단순하게 "검색 후 독해" 형태를 벗어나서, 제가 최근에 연구했던 Phrase-Indexed QA를 새로운 challenge로서 제안하고자 합니다. 기존 기계독해 문제를 phrase retrieval 형태로 치환함으로써, scalability (속도) 뿐만 아니라 phrase representation learning 을 도모합니다. 새로운 패러다임의 첫번째 주자로서 제가 겪었던 문제들 및 해결방법을 논하고, 연구계 및 업계의 참여를 독려하고자 합니다.
목차
1. 찾는 QA (검색)
2. 이해하는 QA (NLP)
3. QA는 검색과 NLP의 조화다
  • 찾고나서 이해하기
  • 빛의 속도로 읽기: Phrase-Indexed QA
강연자
서민준
전체 Schedule 보러가기

PARTNERS

  • baidu
  • carnegie mellon university
  • logo_coupang
  • google
  • hyper connect
  • imply
  • labs
  • labs europe
  • line
  • lunit
  • naver
  • naver business platform
  • nvidia
  • samsunginternet
  • superb ai
  • theori
  • udacity
  • urbanbase

LOCATION

장소
코엑스 그랜드볼룸 (Coex Grand Ballroom)
주소
서울 강남구 영동대로 513 코엑스, (지번) 삼성동 159 코엑스
연락처
02-6000-0114

그랜드볼룸은 봉은사 맞은편 코엑스 1층 북문 쪽에 위치해 있습니다.
지하철 이용 시 9호선 봉은사역 7번 출구를 이용하시거나 삼성역 6번 출구를 이용하시면 됩니다.

교통정보 더보기 >

DEVIEW 2018에 관하여 더 궁금한 점이 있다면?

FAQ 보러가기