Excellence Sharing Growth

2018. 10. 11-12 COEX Grand Ballroom, Seoul

Scroll icon
See you next year!

DEVIEW 2018 행사가 종료되었습니다.

발표 영상과 자료를 지금 확인해보세요.

WATCH VIDEOS
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진

SESSIONS

강연 목록

강연자 사진
강연 분야
  • 머신러닝
  • AI
강연 제목
인공지능이 인공지능 챗봇을 만든다
강연 내용
"언제까지 직접 눈으로 클러스터링할래? 언제까지 밤새 감으로 파라미터 튜닝할래?" AutoML과 자연어처리 중 특히 Chatbot과의 결합으로 데이터만 있으면 스스로 인간의 언어를 학습하고, 보다 정확한 대화모델을 만들어내는 가능성이 현실이 되는 과정을 소개하고자 합니다. 사용자로부터 입력된 여러 쌍의 QA 데이터를 클러스터링부터 여러 모델에 사용될 파라미터 최적화, 개별 모델 성능 평가 그리고 여러 모델 간의 앙상블 가중치 자동설정 후 처음 주어진 데이터로 최적의 챗봇 모델 최종 제안 및 서비스까지 one-click으로 이루어지는 AutoML을 공유하고, 더 넓게는 챗봇이 아닌 다른 NLP분야에서도 적용 가능한 AutoML의 가치를 나누고자 합니다.
목차
  • 스스로 언어를 배우는 인공지능 만들기 : AutoML과 NLP/Chatbot 개념 소개
  • 우리 챗봇의 말하기 실력은 몇 점? : Chatbot 자동 평가 프로세스
  • 말뭉치 줄게, 챗봇 다오 : Chatbot 자동학습 프레임워크
  • 실제 클러스터링 결과, 모델 성능 및 상용 서비스 현황 공유
대상
주어진 문장을 보다 적절한 벡터공간에 표현하고자 하는 노력, 인공지능 모델에게 사람의 언어를 더 잘 가르쳐주고자 하는 노력, 그리하여 사람처럼 자연스럽고 정확하게 대답할 수 있는 챗봇을 만들고자 노력 중인 개발자분들에게 도움이 될 수 있길 기대합니다.
강연자
이재원
강연자 사진
강연 분야
  • 인프라
  • 성능
  • 기타
강연 제목
대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler in IPVS, Linux Kernel
강연 내용
수 천개의 컨테이너로 구성된 대형 컨테이너 클러스터 Platform 에서, Network Load Balancing 은 아주 복잡한 문제 중 하나입니다. 대용량의 Network 트래픽을 컨테이너들로 분산 시키기 위해 많은 수의 Load Balancer 를 구축하고 이를 유기적으로 연결시켜 효율적인 Balancing, High Availability 등을 보장해줘야 하지만, 컨테이너 클러스터 Platform 환경에서는 몇 가지 문제에 직면하게 됩니다. - Container 는 Life Cycle의 특성 상 생성/삭제가 매우 빈번하기 때문에 Load Balancer에 이를 동적으로 반영할 수 있어야 합니다. - 한 개, 또는 여러 개의 Load Balancer가 Down 되어도 이 곳을 경유하던 Network Connection들이 유실되어서는 안됩니다. 이 Connection들은 다른 정상적인 Load Balancer에서 문제 없이 처리되어야 합니다. 이를 위하여 각각의 Load Balancer 가 모든 Connection 정보를 유지하고 있어야 합니다. - 물론, 대용량의 Traffic의 효율적인 분산도 보장되어야 합니다. 이러한 문제들을 풀기 위해서 Linux Kernel 의 Software Load Balancer 인 IPVS 에 Maglev Hashing Scheduler 라는 Module을 개발하여 Contribution 하였고, 이를 사용하여 네이버 서비스 컨테이너들로의 부하를 분산하는 Load Balancer 를 운영하고 있습니다. 이 세션에서는 위 문제들을 해결하기 위해 했던 고민들과 Linux Kernel v4.18 부터 포함되는 IPVS Maglev Hashing Scheduler의 특징을 소개하고, 대형 컨테이너 클러스터에서 어떻게 효율적이고 고가용성을 갖는 Network Load Balancer 를 구축하였는지 등을 공유합니다.
강연자
송인주
강연자 사진
강연 분야
  • 인프라
  • 기타
강연 제목
쿠팡 서비스 Cloud Migration을 통해 배운 것들
강연 내용
지난 몇 년간 쿠팡 서비스는 마이크로 서비스 아키텍쳐로의 변경과 클라우드 환경으로 이전 등으로 인해 많은 변화를 겪었습니다. 특히 2017년에는 단 기간에 수백개의 마이크로 서비스를 클라우드로 이전하면서 새롭고 다양한 문제들을 만났고 이를 극복하기 위해 많은 노력을 했습니다. 이번 세션에서는 무중단으로 클라우드 환경으로 이전하기 위해서 준비 했던 계획들, 이전하면서 발생했던 예상하지 못했던 문제들, 클라우드 환경에서 새롭게 만난 문제들과 다양한 장애들 그리고 이러한 문제들을 해결하기 위해 쿠팡 내부에서 만들어낸 해결책과 아직 풀지 못한 고민에 대해서 이야기 나누려고합니다.
목차
1. 클라우드 이전 계획 및 선행 프로젝트
  • 이전 원칙 : Availability, Scalability, Performance
  • 이전 방법 : Roman Riding
  • Continer Service 도입
  • CI / CD pipeline
  • Log Collecting / Monitoring / Alert
  • Performance Visualize
  • 인프라 및 보안
2. 클라우드 이전 과정
  • Roman Riding : Database
  • Roman Riding : Application
  • Database 의 확장성
  • 예상치 못한 문제들 : Load Balancer
  • 예상치 못한 문제들 : Storage
  • 예상치 못한 문제들 : 각종 Split Brain 상황
  • 비용 최적화 프로젝트
  • Auto Scaling 과 장애
3. 아직 풀지 못한 문제들
  • 복잡해지는 서비스와 전파되는 장애
  • 12 Factors App
  • 테스팅 테스팅 테스팅
대상
  • AWS 등 퍼블릭 클라우드 환경으로 이전을 계획 중인 분
  • 클라우드 환경에서 개발 할 때 주의 해야하는 것들에 대해 궁금 하신 분
강연자
양원석
강연자 사진
강연 분야
  • 머신러닝
  • AI
강연 제목
Deep Learning to help student’s Deep Learning
강연 내용
With the growing demand for people to keep learning throughout their careers, massive open online course (MOOCs) companies, such as Udacity and Coursera, not only aggressively design new courses that are relevant (e.g., self-driving cars and flying cars), but refresh existing courses’ content frequently to keep them up-to-date. This effort results in a significant increase in student numbers, which makes it impractical for even experienced human instructors to assess an individual student's level of engagement and anticipate their learning outcomes. Moreover, students in each MOOC classroom are heterogeneous in background and intention, which is very different from a classic classroom. Even subsequent offerings of a course within a year will have a different population of students, mentors, and—in some cases—instructors. Also, due to the nascent nature of online learning platforms, many other aspects of a course will evolve quickly such that students are frequently being exposed to experimental content modalities or workflow refinements. In this world of MOOCs, an automated machine which reliably forecasts students’ performance in real-time (or early stages), would be a valuable tool for making smart decisions about when (and with whom) to make live educational interventions as students interact with online coursework, with the aim of increasing engagement, providing motivation, and empowering students to succeed. With that, in this talk, we first recast the student performance prediction problem as a sequential event prediction problem. Then introduce recently-developed GritNet architecture which is the current state of the art for student performance problem and develop methods to use (or operationalize) GritNet in real-time or live predictions with on-going courses. Our results for real Udacity students’ graduation predictions demonstrate that the GritNet not only generalizes well from one course to another across different Nanodegree programs, but enhances real-time predictions explicitly in the first few weeks when accurate predictions are most challenging. In contrast to prior works, the GritNet does not need any feature engineering and it can operate on any student event data associated with a timestamp.
강연자
김병학
전체 Schedule 보러가기

PARTNERS

  • baidu
  • carnegie mellon university
  • logo_coupang
  • google
  • hyper connect
  • imply
  • labs
  • labs europe
  • line
  • lunit
  • naver
  • naver business platform
  • nvidia
  • samsunginternet
  • superb ai
  • theori
  • udacity
  • urbanbase

LOCATION

장소
코엑스 그랜드볼룸 (Coex Grand Ballroom)
주소
서울 강남구 영동대로 513 코엑스, (지번) 삼성동 159 코엑스
연락처
02-6000-0114

그랜드볼룸은 봉은사 맞은편 코엑스 1층 북문 쪽에 위치해 있습니다.
지하철 이용 시 9호선 봉은사역 7번 출구를 이용하시거나 삼성역 6번 출구를 이용하시면 됩니다.

교통정보 더보기 >

DEVIEW 2018에 관하여 더 궁금한 점이 있다면?

FAQ 보러가기