Excellence Sharing Growth

2018. 10. 11-12 COEX Grand Ballroom, Seoul

Scroll icon
See you next year!

DEVIEW 2018 행사가 종료되었습니다.

발표 영상과 자료를 지금 확인해보세요.

WATCH VIDEOS
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진

SESSIONS

강연 목록

강연자 사진
강연 분야
  • 모바일
강연 제목
지난 1년간의 웨일 브라우저와 그 미래 (부제: 제품 매니저가 들려주는 생생한 기술/제품 이야기)
강연 내용
기술 제품 매니저가 들려주는 제품과 그것을 만드는 과정에 대한 생생한 이야기. 지난 1년간 웨일 브라우저가 한 일들, 도전한 것들, 사용자들과 함께 한 것들을 정리하고 기술에 기반한 제품을 만드는 과정에서 생긴 수많은 시행착오를 통해 얻은 것을 공유하는 자리입니다. 또한 웨일 브라우저의 향후 로드맵을 공유합니다. 추가로, 복잡도가 있는 대규모 기술 제품을 만드는 팀은 어떻게 일하고 있는가를 이야기하고 개발팀이 일하는 방식에 대한 고민을 나누려 합니다.
목차
1년간의 웨일 브라우저
  • 웨일 브라우저 현황
  • 목표했던 것들
  • 이룬 것들, 이루지 못한 것들
목표를 향한 과정 (주로 시행착오)
  • 어떻게 모바일 제품을 만들것인가? 차별화와 그 함정
  • 목표를 향한 고민/삽질들
  • 제품을 만들면서 배운 것
    • 웨일팀은 어떻게 변화하면서 일해왔는가?
      • 팀이 일하는 원칙 (애자일이 뭔가요?)
      • 앞으로의 웨일 브라우저
        • 꼭 하고싶은 일들
        • 향후 로드맵 그리고...
        대상
        • 브라우저에 대해 관심이 있고, 웹 환경 개선에 관심이 있는 개발자/사용자
        • 기술을 다루고 있지만 그것이 제품으로 만들어지는 과정, Product management에 대해 관심있는 사람
강연자
김효
강연자 사진
강연 분야
  • 인프라
  • 성능
  • 기타
강연 제목
대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler in IPVS, Linux Kernel
강연 내용
수 천개의 컨테이너로 구성된 대형 컨테이너 클러스터 Platform 에서, Network Load Balancing 은 아주 복잡한 문제 중 하나입니다. 대용량의 Network 트래픽을 컨테이너들로 분산 시키기 위해 많은 수의 Load Balancer 를 구축하고 이를 유기적으로 연결시켜 효율적인 Balancing, High Availability 등을 보장해줘야 하지만, 컨테이너 클러스터 Platform 환경에서는 몇 가지 문제에 직면하게 됩니다. - Container 는 Life Cycle의 특성 상 생성/삭제가 매우 빈번하기 때문에 Load Balancer에 이를 동적으로 반영할 수 있어야 합니다. - 한 개, 또는 여러 개의 Load Balancer가 Down 되어도 이 곳을 경유하던 Network Connection들이 유실되어서는 안됩니다. 이 Connection들은 다른 정상적인 Load Balancer에서 문제 없이 처리되어야 합니다. 이를 위하여 각각의 Load Balancer 가 모든 Connection 정보를 유지하고 있어야 합니다. - 물론, 대용량의 Traffic의 효율적인 분산도 보장되어야 합니다. 이러한 문제들을 풀기 위해서 Linux Kernel 의 Software Load Balancer 인 IPVS 에 Maglev Hashing Scheduler 라는 Module을 개발하여 Contribution 하였고, 이를 사용하여 네이버 서비스 컨테이너들로의 부하를 분산하는 Load Balancer 를 운영하고 있습니다. 이 세션에서는 위 문제들을 해결하기 위해 했던 고민들과 Linux Kernel v4.18 부터 포함되는 IPVS Maglev Hashing Scheduler의 특징을 소개하고, 대형 컨테이너 클러스터에서 어떻게 효율적이고 고가용성을 갖는 Network Load Balancer 를 구축하였는지 등을 공유합니다.
강연자
송인주
강연자 사진
강연 분야
  • 모바일
  • 테크 스타트업
  • 머신러닝
  • AI
강연 제목
모바일 환경에서 실시간 Portrait Segmentation 구현하기
강연 내용
최근 딥러닝의 발전으로 전에 없던 다양한 서비스들이 개발되고 있습니다. 그러나 아직 대부분의 딥러닝 기반 서비스는 기술적 한계로 인해 서버 상에 배포되는 경우가 많고, 이런 서버 배포 모델은 통신에 드는 비용으로 인해 실시간 서비스에 적용하기 어려운 문제가 있습니다. 본 세션에서는 하이퍼커넥트에서 서비스 중인 아자르에 모바일 상에서 구동 가능한 실시간 portrait segmentation 기능을 개발하여 적용하기까지 사용했던 기술과 경험을 공유하려 합니다. Portrait segmentation은 사진 혹은 영상 속에서 전경과 배경을 구분해내는 기술로, 세션에서 소개할 방법들을 통해 Galaxy J7과 같은 저가형 휴대폰에서도 single-core로 30 프레임 영상의 전경과 배경을 분리하는 애플리케이션을 만들 수 있었습니다. 세션 내용은 모델의 크기와 추론 시간을 줄일 수 있는 일반적 기술에 대한 소개와 실제로 TFLite를 사용한 모바일 애플리케이션을 만들며 겪은 시행착오 위주로 구성됩니다. 보다 자세한 내용이 궁금하신 분들은 하이퍼커넥트 기술 블로그(https://hyperconnect.github.io)를 참고 부탁드립니다.
목차
1. 모바일 딥러닝
  • 모바일 딥러닝의 현재
  • 데모 프로젝트를 상용 서비스로 만들때의 유의점
    • 2. Portrait Segmentation 101
      • Portrait Segmentation을 어디에 쓸 수 있을까?
        • 3. 추론(inference) 시간을 줄이려면?
          • Quantization
          • Factorization
          • Distillation
          • Model design principles
            • 4. Single-core로 30프레임 성능을 내기까지
              • TFLite 최적화 구현 활용하기
              • TFLite 구현시 마주하는 함정들과 해결법
              • SIMD로 bilinear upsampling 구현하기
강연자
서석준
강연자 사진
강연 분야
  • 검색
  • 머신러닝
  • AI
강연 제목
기계독해 QA: 검색인가, NLP인가?
강연 내용
이 세션에서는 기계 독해 (Machine Reading) 모델을 QA 엔진에 적용하는 방법론에 대한 연구, 겪었던 문제들, 연구계 및 산업의 동향, 그리고 제가 생각하는 우리가 나아가야 할 방향을 전반적으로 다룰 예정입니다. 기계독해는 주어진 문서와 문서에 대한 질문이 주어졌을 때, 문서내에서 답을 구하는 문제입니다. 기계독해는 2016년 SQuAD를 시발점으로 최근에 많은 모델과 많은 데이터 (TriviaQA, MS MARCO, 등등)가 연구 및 공개되었고, 특히 올해에는 인간수준을 넘어서는 알리바바, 마이크로소프트 및 구글의 모델이 공개되기도 했습니다. 이렇게 연구계와 업계가 많은 관심을 보인 이유가 여럿 있겠지만, 기계독해 모델이 QA (질의응답) 엔진에 직접적으로 적용이 가능한 점을 빼놓을 수 없습니다. 예를 들어, "하늘이 왜 파랄까?"라는 질문을 답하기 위해 먼저 관련된 "하늘"이라는 문서를 찾고, 기계독해 모델에 해당문서와 질문을 넣게 되면, 답이 나오는 구조입니다. 이는 문서를 찾아주기만 하는 서비스, 즉 "검색"을 넘어서서, 문서를 "이해"하고 원하는 정보를 꼭 집어서 찾아줄 수 있는 서비스가 됩니다. 다만 막대한 정보의 바다 속에서 올바른 문서를 찾는 것은 쉬운 것이 아닙니다. 따라서 기계독해를 통한 QA는 검색과 NLP의 첨단 접점이라 볼 수 있습니다. 먼저 기계독해 이전의 검색기반 QA를 간단히 설명하고, 다음은 최근에 각광받는 기계독해 (NLP) 기반 QA를 자세하게 살펴보려 합니다. 하지만 전자는 섬세함이 부족하고, 후자는 속도가 느립니다. 그래서 마지막으로는 둘을 통합하는 방법론을 다룹니다. 특히, 단순하게 "검색 후 독해" 형태를 벗어나서, 제가 최근에 연구했던 Phrase-Indexed QA를 새로운 challenge로서 제안하고자 합니다. 기존 기계독해 문제를 phrase retrieval 형태로 치환함으로써, scalability (속도) 뿐만 아니라 phrase representation learning 을 도모합니다. 새로운 패러다임의 첫번째 주자로서 제가 겪었던 문제들 및 해결방법을 논하고, 연구계 및 업계의 참여를 독려하고자 합니다.
목차
1. 찾는 QA (검색)
2. 이해하는 QA (NLP)
3. QA는 검색과 NLP의 조화다
  • 찾고나서 이해하기
  • 빛의 속도로 읽기: Phrase-Indexed QA
강연자
서민준
전체 Schedule 보러가기

PARTNERS

  • baidu
  • carnegie mellon university
  • logo_coupang
  • google
  • hyper connect
  • imply
  • labs
  • labs europe
  • line
  • lunit
  • naver
  • naver business platform
  • nvidia
  • samsunginternet
  • superb ai
  • theori
  • udacity
  • urbanbase

LOCATION

장소
코엑스 그랜드볼룸 (Coex Grand Ballroom)
주소
서울 강남구 영동대로 513 코엑스, (지번) 삼성동 159 코엑스
연락처
02-6000-0114

그랜드볼룸은 봉은사 맞은편 코엑스 1층 북문 쪽에 위치해 있습니다.
지하철 이용 시 9호선 봉은사역 7번 출구를 이용하시거나 삼성역 6번 출구를 이용하시면 됩니다.

교통정보 더보기 >

DEVIEW 2018에 관하여 더 궁금한 점이 있다면?

FAQ 보러가기