Excellence Sharing Growth

2018. 10. 11-12 COEX Grand Ballroom, Seoul

Scroll icon
See you next year!

DEVIEW 2018 행사가 종료되었습니다.

발표 영상과 자료를 지금 확인해보세요.

WATCH VIDEOS
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진

SESSIONS

강연 목록

강연자 사진
강연 분야
  • 모바일
  • AR
  • 테크 스타트업
강연 제목
printf("Hello, AR"); //세상을 바꾸는 새로운 눈
강연 내용
가상과 현실의 동시 경험을 제공하는 AR 기술의 작동원리는 크게 규칙적인 디지털 표식/패턴을 인식하는 마커 방식과 이미지/오브젝트 형태 등을 인식하는 마커리스 방식으로 구분됩니다. 이러한 인식기술에 컨텐츠 (3D,영상,이미지 등)을 표시하기 위한 그래픽 렌더링 기술, 사용자의 입출력 정보와 디바이스의 센서 (가속,자이로,근접,밝기,모션) 정보 등을 최종적으로 카메라에 연출하는 영상 합성기술 등이 더해져서 AR이 작동하게 됩니다. 본 세션에서는 복잡한 AR 기술에 조금 더 쉽게 접근하기 위한 정보와 국내 최초로 AR서비스를 개발하면서 겪은 시행착오, 이를 통해 얻게 된 인사이트들을 공유드리고자 합니다.
목차
1. VR(Virtual reality)속 AR(Augment reality)
2. AR은 우리의 삶에 어떻게 녹아 있는가?
  • 시장규모 및 전망
  • 소비기반의 AR : 커머스, 네비게이션, 게임, 교육 등
  • 생산기반의 AR : 제조, 건축, 의료 등
3. AR 기술 구현의 한계
  • 개발 측면 : 3D 관련 지식, AR 개발도구 & 문서, 필수인력
  • 인프라 측면 : 디바이스, 네트워크
  • 서비스 측면 : BM 확장, 단순 마케팅 수단
4. AR 구현을 돕는 다양한 도구들
  • 비개발자 : wiarframe, Snapchat Lens Studio, Facebook AR Studio
  • 개발자 : 3D 변환 API, 다양한 AR SDK
5. AR 구현 시 겪게되는 경험 공유
  • 용어부터 어려운 기반 지식 : VIO, 6DoF, Light Estimation, SLAM, PBR, ToF
  • 기술응용에 필요한 학습비용(ARKit, ARCore 등)
  • 표준 파일 포맷 부재 : OS(iOS, Android)별 상이한 3D 파일 포맷
  • 서비스 품질 수준
  • User Experience : 단순함, 피로감, 2D와의 차별화
6. 가까운 미래에 만나게 될 AR 기술 및 서비스
  • Quick Look
  • Object Scan, Save, Detect
  • AR Cloud : Cloud Anchor, AR 명함, 건축가를 위한 AR
  • AR + Vision + Machine Learning
대상
  • AR 서비스에 대한 새로운 비지니스 모델을 고민하는 기획자/개발자/디자이너 누구나
  • AR 서비스 개발에 흥미를 갖는 개발자
강연자
방현우
강연자 사진
강연 분야
  • 검색
  • 머신러닝
  • AI
강연 제목
Fashion Visual Search
강연 내용
네이버에서는 정확한 정보를 찾기 위해 이미지를 분석하는 다양한 방법을 연구해 왔습니다. 저희는 그 중에서도 패션 이미지 검색에 대해 이야기 해보려 합니다. 패션 검색은 도메인 특성상 기존의 유사이미지를 찾아주는 문제와 접근 방법이 조금 다릅니다. 사용자들은 '정확하게 똑같은 의류' 뿐만 아니라 '유사하지만 스타일이 다른 의류' 이미지 또한 찾고 싶어하기 때문이죠. 이번 세션에서는 패션 검색이 어려운 이유와 그 문제를 어떻게 풀어가고 있는지, 그리고 앞으로의 도전 과제는 무엇인지에 대해 저희가 고민하고 있는 것들을 공유하려고 합니다.
목차
Background
  • 이미지 검색과 이미지 분류
  • 패션 이미지 검색이란?
  • 네이버/라인 서비스 적용 사례
Fashion Visual Search System
  • 무엇이 패션 검색을 어렵게 만드나?
  • 패션 검색 시스템 레시피
성능 끌어올리기 전략: 악마는 디테일에 있다
  • 도메인을 고려하고 있는가?
  • 제한 검색, 득과 실
서비스 딜리버리: Pitfalls
  • 규모의 함정 - 당신이 만든 서비스는 별 볼 일 없다
  • 의도의 함정 - 그 사람은 패션 검색을 하지 않았다
  • 의존성의 함정 - MLaaS, Module & Component
Search-by-Attribute: Beyond Snap & Search
  • 잘 찾는 것이 잘 못 찾는 것이라는 이상한 이야기
  • Fake feature vector - Generative model의 새로운 발견
  • 사용자가 원하는 스타일 속성을 더하여 검색하기 (text -> image -> feature level manipulation)
강연자
최승권 Jon Almazan
강연자 사진
강연 분야
  • 모바일
  • 테크 스타트업
  • 머신러닝
  • AI
강연 제목
모바일 환경에서 실시간 Portrait Segmentation 구현하기
강연 내용
최근 딥러닝의 발전으로 전에 없던 다양한 서비스들이 개발되고 있습니다. 그러나 아직 대부분의 딥러닝 기반 서비스는 기술적 한계로 인해 서버 상에 배포되는 경우가 많고, 이런 서버 배포 모델은 통신에 드는 비용으로 인해 실시간 서비스에 적용하기 어려운 문제가 있습니다. 본 세션에서는 하이퍼커넥트에서 서비스 중인 아자르에 모바일 상에서 구동 가능한 실시간 portrait segmentation 기능을 개발하여 적용하기까지 사용했던 기술과 경험을 공유하려 합니다. Portrait segmentation은 사진 혹은 영상 속에서 전경과 배경을 구분해내는 기술로, 세션에서 소개할 방법들을 통해 Galaxy J7과 같은 저가형 휴대폰에서도 single-core로 30 프레임 영상의 전경과 배경을 분리하는 애플리케이션을 만들 수 있었습니다. 세션 내용은 모델의 크기와 추론 시간을 줄일 수 있는 일반적 기술에 대한 소개와 실제로 TFLite를 사용한 모바일 애플리케이션을 만들며 겪은 시행착오 위주로 구성됩니다. 보다 자세한 내용이 궁금하신 분들은 하이퍼커넥트 기술 블로그(https://hyperconnect.github.io)를 참고 부탁드립니다.
목차
1. 모바일 딥러닝
  • 모바일 딥러닝의 현재
  • 데모 프로젝트를 상용 서비스로 만들때의 유의점
    • 2. Portrait Segmentation 101
      • Portrait Segmentation을 어디에 쓸 수 있을까?
        • 3. 추론(inference) 시간을 줄이려면?
          • Quantization
          • Factorization
          • Distillation
          • Model design principles
            • 4. Single-core로 30프레임 성능을 내기까지
              • TFLite 최적화 구현 활용하기
              • TFLite 구현시 마주하는 함정들과 해결법
              • SIMD로 bilinear upsampling 구현하기
강연자
서석준
전체 Schedule 보러가기

PARTNERS

  • baidu
  • carnegie mellon university
  • logo_coupang
  • google
  • hyper connect
  • imply
  • labs
  • labs europe
  • line
  • lunit
  • naver
  • naver business platform
  • nvidia
  • samsunginternet
  • superb ai
  • theori
  • udacity
  • urbanbase

LOCATION

장소
코엑스 그랜드볼룸 (Coex Grand Ballroom)
주소
서울 강남구 영동대로 513 코엑스, (지번) 삼성동 159 코엑스
연락처
02-6000-0114

그랜드볼룸은 봉은사 맞은편 코엑스 1층 북문 쪽에 위치해 있습니다.
지하철 이용 시 9호선 봉은사역 7번 출구를 이용하시거나 삼성역 6번 출구를 이용하시면 됩니다.

교통정보 더보기 >

DEVIEW 2018에 관하여 더 궁금한 점이 있다면?

FAQ 보러가기