Excellence Sharing Growth

2018. 10. 11-12 COEX Grand Ballroom, Seoul

Scroll icon
See you next year!

DEVIEW 2018 행사가 종료되었습니다.

발표 영상과 자료를 지금 확인해보세요.

WATCH VIDEOS
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진
2018 DEVIEW 행사 사진

SESSIONS

강연 목록

강연자 사진
강연 분야
  • 모바일
  • AR
  • 테크 스타트업
강연 제목
printf("Hello, AR"); //세상을 바꾸는 새로운 눈
강연 내용
가상과 현실의 동시 경험을 제공하는 AR 기술의 작동원리는 크게 규칙적인 디지털 표식/패턴을 인식하는 마커 방식과 이미지/오브젝트 형태 등을 인식하는 마커리스 방식으로 구분됩니다. 이러한 인식기술에 컨텐츠 (3D,영상,이미지 등)을 표시하기 위한 그래픽 렌더링 기술, 사용자의 입출력 정보와 디바이스의 센서 (가속,자이로,근접,밝기,모션) 정보 등을 최종적으로 카메라에 연출하는 영상 합성기술 등이 더해져서 AR이 작동하게 됩니다. 본 세션에서는 복잡한 AR 기술에 조금 더 쉽게 접근하기 위한 정보와 국내 최초로 AR서비스를 개발하면서 겪은 시행착오, 이를 통해 얻게 된 인사이트들을 공유드리고자 합니다.
목차
1. VR(Virtual reality)속 AR(Augment reality)
2. AR은 우리의 삶에 어떻게 녹아 있는가?
  • 시장규모 및 전망
  • 소비기반의 AR : 커머스, 네비게이션, 게임, 교육 등
  • 생산기반의 AR : 제조, 건축, 의료 등
3. AR 기술 구현의 한계
  • 개발 측면 : 3D 관련 지식, AR 개발도구 & 문서, 필수인력
  • 인프라 측면 : 디바이스, 네트워크
  • 서비스 측면 : BM 확장, 단순 마케팅 수단
4. AR 구현을 돕는 다양한 도구들
  • 비개발자 : wiarframe, Snapchat Lens Studio, Facebook AR Studio
  • 개발자 : 3D 변환 API, 다양한 AR SDK
5. AR 구현 시 겪게되는 경험 공유
  • 용어부터 어려운 기반 지식 : VIO, 6DoF, Light Estimation, SLAM, PBR, ToF
  • 기술응용에 필요한 학습비용(ARKit, ARCore 등)
  • 표준 파일 포맷 부재 : OS(iOS, Android)별 상이한 3D 파일 포맷
  • 서비스 품질 수준
  • User Experience : 단순함, 피로감, 2D와의 차별화
6. 가까운 미래에 만나게 될 AR 기술 및 서비스
  • Quick Look
  • Object Scan, Save, Detect
  • AR Cloud : Cloud Anchor, AR 명함, 건축가를 위한 AR
  • AR + Vision + Machine Learning
대상
  • AR 서비스에 대한 새로운 비지니스 모델을 고민하는 기획자/개발자/디자이너 누구나
  • AR 서비스 개발에 흥미를 갖는 개발자
강연자
방현우
강연자 사진
강연 분야
  • 머신러닝
  • AI
강연 제목
Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
강연 내용
이 세션에서는 딥러닝 모델을 실제 서비스하는 방법에 대해 실제 경험을 바탕으로 노하우와 팁을 공유합니다. 업데이트된 모델을 안정적으로 배포하는 방법과 롤백, 인퍼런스 오류를 어떻게 대처할지, CPU로 서빙할지 GPU로 서빙할지, 늘어나는 트래픽을 어떻게 대처할지, 서빙을 위한 플랫폼 설계 노하우와 성능 향상을 위한 모듈화, 구현하면서 맞닥뜨렸던 문제들과 고군분투하여 찾은 노하우들 그리고 몇 주간의 삽질로 찾은 안되는 설계와 엔지니어링 측면에서 범하기 쉬운 설계 오류와 실제 성능 테스트 결과 등을 알려드립니다.
목차
1. 문제
  • 모델은 있는데 서버가 없네
  • 다른 사람들은 어떻게 제공하고 있나
2. 해결을 위한 설계 - 학습과 서빙을 위한 시스템 설계 사례
  • 인퍼런스 요청 모듈화하기
  • 어떤 플랫폼을 사용해서 서빙할까 - 인퍼런스 서빙 시스템 아키텍처
  • 인퍼런스 시스템의 라이프사이클
3. AiSP(AI Serving Platform)를 만들어 해결해보기
  • 인퍼런스 서버 만들기
  • 인퍼런스 프로트엔드 만들기
  • 딥러닝 모델 배포 플로우
  • 인퍼런스 트래픽을 컨테이너로 스케일아웃 하기
  • 모델 관리하기와 데이터 관리하기
  • 인퍼런스 예외 처리
4. 만들어진 딥러닝 서빙 플랫폼은 이런 모습
  • 노트북/특정 장비에서 띄우기
  • 네이버의 IQE, C3 플랫폼을 사용해 띄우기
5. 딥러닝 인퍼런스 성능 측정 및 모니터링
  • 성능에 나타난 인퍼런스 요청의 특징
  • 실제로 모니터링하는 지표들 살펴보기
강연자
현동석 양은숙
강연자 사진
강연 분야
  • 검색
  • 머신러닝
  • AI
강연 제목
Fashion Visual Search
강연 내용
네이버에서는 정확한 정보를 찾기 위해 이미지를 분석하는 다양한 방법을 연구해 왔습니다. 저희는 그 중에서도 패션 이미지 검색에 대해 이야기 해보려 합니다. 패션 검색은 도메인 특성상 기존의 유사이미지를 찾아주는 문제와 접근 방법이 조금 다릅니다. 사용자들은 '정확하게 똑같은 의류' 뿐만 아니라 '유사하지만 스타일이 다른 의류' 이미지 또한 찾고 싶어하기 때문이죠. 이번 세션에서는 패션 검색이 어려운 이유와 그 문제를 어떻게 풀어가고 있는지, 그리고 앞으로의 도전 과제는 무엇인지에 대해 저희가 고민하고 있는 것들을 공유하려고 합니다.
목차
Background
  • 이미지 검색과 이미지 분류
  • 패션 이미지 검색이란?
  • 네이버/라인 서비스 적용 사례
Fashion Visual Search System
  • 무엇이 패션 검색을 어렵게 만드나?
  • 패션 검색 시스템 레시피
성능 끌어올리기 전략: 악마는 디테일에 있다
  • 도메인을 고려하고 있는가?
  • 제한 검색, 득과 실
서비스 딜리버리: Pitfalls
  • 규모의 함정 - 당신이 만든 서비스는 별 볼 일 없다
  • 의도의 함정 - 그 사람은 패션 검색을 하지 않았다
  • 의존성의 함정 - MLaaS, Module & Component
Search-by-Attribute: Beyond Snap & Search
  • 잘 찾는 것이 잘 못 찾는 것이라는 이상한 이야기
  • Fake feature vector - Generative model의 새로운 발견
  • 사용자가 원하는 스타일 속성을 더하여 검색하기 (text -> image -> feature level manipulation)
강연자
최승권 Jon Almazan
전체 Schedule 보러가기

PARTNERS

  • baidu
  • carnegie mellon university
  • logo_coupang
  • google
  • hyper connect
  • imply
  • labs
  • labs europe
  • line
  • lunit
  • naver
  • naver business platform
  • nvidia
  • samsunginternet
  • superb ai
  • theori
  • udacity
  • urbanbase

LOCATION

장소
코엑스 그랜드볼룸 (Coex Grand Ballroom)
주소
서울 강남구 영동대로 513 코엑스, (지번) 삼성동 159 코엑스
연락처
02-6000-0114

그랜드볼룸은 봉은사 맞은편 코엑스 1층 북문 쪽에 위치해 있습니다.
지하철 이용 시 9호선 봉은사역 7번 출구를 이용하시거나 삼성역 6번 출구를 이용하시면 됩니다.

교통정보 더보기 >

DEVIEW 2018에 관하여 더 궁금한 점이 있다면?

FAQ 보러가기