Armeria

A Microservice Framework

Well-suited Everywhere

Trustin Lee, LINE
Oct 2019

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

A microservice framework, again?

yW@Earmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Yeah, but for good reasons!

Simple & User-friendly
Asynchronous & Reactive

1st-class RPC support

- ... with better-than-upstream experience
Unopinionated integration & migration

Less points of failure

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

How simple is it, then?

YWEarmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Hello, world!

Server server = Server.butilder()
.http(8080)
.https(8443)
.tlsSelfSigned()
.haproxy(8080)
.service("/hello/:name",

(ctx, req) -> HttpResponse.of("Hello, %s!",
ctx.pathParam("name")))

Protocol auto-detection at 8080

butild();
server.start();

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Hello, world — Annotated

Server server = Server.butilder()

.http(8080)

.annotatedService(new Object() {
@Get("/hello/:name")
public String hello(@Param String name) {

return String.format("Hello, %s!", name);

}

})

build();
server.start();

* Full example:
https://github.com/line/armeria-examples/tree/master/annotated-http-service

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria-examples/tree/master/annotated-http-service

'‘SRPC

Server server = Server.builder()
.http(8080)
.service(GrpcService.butilder()
.addService(new GrpcHelloService())
.build())
build();

class GrpcHelloService
extends HelloServiceGrpc.HelloServiceImplBase {

* Full example:
https://github.com/line/armeria-examples/tree/master/grpc-service

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria-examples/tree/master/grpc-service

Thrift

Server server = Server.builder()
.http(8080)
.service("/hello",
THttpService.of(new ThriftHelloService()))
build();

class ThriftHelloService implements HelloService.AsyncIface {

}

YWEarmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Mix & Match!

Server server = Server.builder()
.http(8080)
.service("/hello/rest",
(ctx, req) -> HttpResponse.of("Hello, world!"))
.service("/hello/thrift",
THttpService.of(new ThriftHelloService()))
.service(GrpcService.butilder()
.addService(new GrpcHelloService())
Lbuild())
build();

YWEarmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Why going asynchronous & reactive?

yW@Earmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

One fine day of
a synchronous microservice

Pending requests (Queue)

Time spent for each shard

Thread 1

Thread 2
Thread 3 ‘ -
Thread 4 ‘ ud

https://twitter.com/armeria_project
https://github.com/line/armeria

Shard 2 ruins the fine day...

Pending requests (Queue)

Time spent for each shard

Thread 1

Thread 2
}‘43 ‘\
Thread 4 ‘/
Timeout!
— J

wWearmeria project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Shard 1& 3: Why are no requests coming? }I
Workers: We're busy waiting for Shard 2.

Pending requests (Queue) Time spent for each shard

Thread 1

Timeouts! [I

—)

wWearmeria project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

1
L 4

.. propagating everywhere! s

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

How can we solve this?

* Add more CPUs?

- They are very idle.

* Add more threads?

- They will all get stuck with Shard 2 in no time.

- Waste of CPU cycles & memory — context switches & call stack

* Result:
- Fragile system that falls apart even on a tiny backend failure

- Inefficient system that takes more memory and CPU

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

How can we solve this? o

* Can work around, must keep tuning and adding hacks, e.g.
- Increasing # of threads & reducing call stack

- Prepare thread pools for each shard

* Shall we just go asynchronous, please?

- Less tuning points

* Memory size & # of event loops

- Better resource utilization with concurrent calls + less threads

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Problems with large payloads

* We solved blocking problem with asynchronous programming,

but can we send 10MB personalized response to 100K clients?
- Can’t hold that much in RAM - 10MB x 100K = 1T7B

* What if we - they send too fast?

- Different bandwidth & processing power

* We need ‘just enough buffering.’
- Expect OutOfMemoryError otherwise.

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Traditional vs. Reactive

Traditional

> - >

A bunch of
clients

P \
| R—«
, \\ Al—1A
A -
~ A

—
A/

A

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Reactive HTTP/2 proxy in 6 lines

// Use Armeria's async & reactive HTTP/2 client.
HttpClient client = HttpClient.of("h2c://backend");
Server server = Server.builder()
.http(8080)
.service("prefix:/",
// Forward all requests reactively.
(ctx, req) -> client.execute(req))
build();

* Full example:
https://github.com/line/armeria-examples/tree/master/proxy-server

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria-examples/tree/master/proxy-server

1**-class RPC support

with better-than-upstream experience

YWEarmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

RPC vs. HTTP impedance mismatch

* RPC has been hardly a 1st-class citizen in web frameworks.
- Which method was called with what parameters?

- What’s the return value? Did it succeed?

POST /some_service HTTP/1.1 HTTP/1.1 200 _0K
Host: example.com Host: example:

Content-Length: 96 Content-Length:
<binary request> <binary response>

Failed RPC call
192.167.1.2 - - [10/0ct/2000:13:55:36 -0700]

"POST /some_service HTTP/1.1" 200 2326

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Killing many birds with Structured Logging

* Timings * HTTP-level

- Low-level timings, e.g. DNS - Socket - Request - Response headers

- Request - Response time - Content preview, e.g. first 64 bytes
* Application-level « RPC-level

- Custom attributes - Service type

* User
_ - method and parameters
* Client type
- Region, ... - Return values and exceptions

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

First things first — Decorators

GrpcService.builder().addService(new MyServiceImpl()).build()
.decorate((delegate, ctx, req) -> {
ctx.log().addListener(log -> 1

}, RequestLogAvailability.COMPLETE);

return delegate.serve(ctx, req);

});

* Decorators are used everywhere in €% Armeria

- Most features mentioned in this presentation are decorators.

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Async retrieval of structured logs

GrpcService.builder().addService(new MyServiceImpl()).build()
.decorate((delegate, ctx, req) -> {
ctx.log().addListener(log -> {

}, RequestLogAvailability.COMPLETE);

return delegate.serve(ctx, req);

});

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Async retrieval of structured logs (ontq)

ctx.log().addListener(log -> {
long reqStartTime = log.requestStartTimeMillis()
long resStartTime log.responseStartTimeMillis(

)s

RpcRequest rpcReq = (RpcRequest) log.requestContent();
1F (rpcReq T= null) {
String method = rpcReq.method();

List<Object> params = rpcReq.params();

RpcResponse rpcRes = (RpcResponse) log.responseContent();

1f (rpcRes T= null) {
Object result = rpcRes.getNow(null);
}
}

}, RequestLogAvailability.COMPLETE);

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

t app.type @ Q [0 %k ANDROID

t app.version @ Q@M% 9.15.0

t args_json @ Q @ % {"request":{" " " "R, "l

O client_ip @ Q@ * .; .

t exception Q Q [@ % Armerld
t method Q QM * squareservi ce#fetchMyEvents

t phase @ Q [0 % RELEASE

processing_time_millis @ @ M % 3 % kqfka

t request_header.name @ Q@ @ %k fetchMyEvents

request_header.seqid QQM*k 1 .
t request_header.type @ Q [0 %k CALL - e I a Stl Csea rCh

t request_id Q@ Q @M % 15710383415390

© request_timestamp @ Q [0 %k October 14th 2019, 16:32:21.539 .
t response_header.name @ Q [0 % fetchmyEvents ' kl ba n a
response_header.seqid @ Q [@ %k 1

t response_header.type @ Q@ [@ %k REPLY

t result_json @ @ M &k {"success":{" R " ! " 3" "
A

t server_id Q Q@ %

user.id Q Q@ %k

t user.user_region @QQ@*k TH

https://twitter.com/armeria_project
https://github.com/line/armeria

Making a debug call

* Sending an ad-hoc query in RPC is hard.
- Find a proper service definition, e.g. . thrift or .proto files
— Set up code generator, build, IDE, etc.

— Write some code that makes an RPC call.

* HTTP In contrast:

- cURL, telnet command, web-based tools and more.

* What if we build something more convenient and collaborative?

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Armeria documentation service

* Enabled by adding DocService

* Browse and invoke RPC services in an ﬁ- Armeria server
- No fiddling with binary payloads

- Send a request without writing code
* Supports gRPC, Thrift and annotated services

* We have a plan to add:
— Metric monitoring console

- Runtime configuration editor, e.g. logger level

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Armeria documentation service 0.94.1

Services ~ Cassandra.add()
Increment or decrement a counter.
Cassandra A
RE () Parameters
RO batch_mutate () Name Required Type Description
POST describe_cluster_name()
key required binary
POST describe_keyspace()
POST describe_keyspaces() column_parent required ColumnParent
POST describe_partitioner()
column required CounterColumn
POST describe_ring()
. . consistency_level required Consistencylevel
POST describe_schema_versions()
POST describe_snitch()
POST describe_splits()
POST describe_version() Return Type
POST execute_cql_query() void
POST execute_prepared_cql_query()
POST get()
Exceptions
POST get_count()
InvalidRequestException
POST get_indexed_slices()
POST get_range_slices() TimedOutException
POST get_slice()) .
UnavailableException
[posT | insert ()

https://twitter.com/armeria_project
https://github.com/line/armeria

* Share the URL to reproduce a call.

| (0 ost:3000/docs/#/methods/com.linecorp.armeria.service.test.thrift. main.HelloService/hello/POST?request_body={"name"%3A"world!"} v e*e ﬁl

Debug B
HTTP HEADERS -i=
REQUEST BODY {
"method" : "hello",
{ "type" : "REPLY",
"name" : "world!" "seqid" : @,
} "args" : {
"success" : "Hello world!"
}

}

S1V:1VINme COPY AS A CURL COMMAND

https://twitter.com/armeria_project
https://github.com/line/armeria

Cool features not available in upstream

* gRPC
- Works on both HTTP/1 and 2

- gRPC-Web support, i.e. can call gRPC services from JavaScript frontends
* Thrift
- HTTP/2, TTEXT (human-readable REST-ish JISON)

- Can leverage &% Armeria decorators
- Structured logging, Metric collection, Distributed tracing, Authentication
- CORS, SAML, Request throttling, Circuit breakers, Automatic retries, ...

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Cool features not available in upstream

* Can mix grRPC, Thrift, REST, Tomcat, Jetty, ...
- onasingle HTTP port & single JVM
- without any proxies
- REST API — Static files
- Exposing metrics - Health-check requests from load balancers

- Traditional JEE webapps

* Share common logic between different endpoints!

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Unopinionated
Integration & migration

yW@Earmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Armeria ‘& What You ‘&

* Use your favorite tech, not ours:
- DI- &) spring, Guice, Dagger, ...
- Protocols —'gRPC, Thrift, REST, ...
* Choose only what you want:

- Most features are optional.

- Compose and customize at your will.

* Your application grows with you, not by its own.

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Case of 5 slack

* Using Thrift since 2015
* Migrated from Thrift to gRPC

— Can run both while clients are switching

* Leverages built-in non-RPC services:

- PrometheusExpositionService g
- HealthCheckService

- BraveService - Distributed tracing with «=@® honeycomb
- DocService

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

.defaultRequestTimeoutMillis(config.getRequestTimeoutMillis())
.maxNumConn ..

.meterRegis C f SIGCk
.port(confi ase O ..
.serviceUnder(config.getHealthPath(), healthCheckService)
.serviceUnder(config.getMetricsPath(), metricsService)
.serviceUnder(config.getDocsPath(), docService);

// Add user defined services.
config.getRawServices().forEach((path, service) —> builder.serviceUnder(path, service));
config.getThriftServices().forEach((path, service) —> builder.serviceUnder(path, service));
if (!config.getGrpcServices().isEmpty()) {
GrpcServiceBuilder grpcBuilder = new GrpcServiceBuilder();
config.getGrpcServices().forEach(service —> grpcBuilder.addService(service));
builder.service(grpcBuilder.build());

* Full migration story: https://sched.co/L715

yWearmeria_project C)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
https://sched.co/L715

Case of LINE

* In-app emoji - sticker store (50k-100k reqs/sec)

* Before:
- Spring Boot + Tomcat (HTTP/1) + Thrift on Servlet
— Apache HttpClient

* After — Migrate keeping what you love &
- Spring Boot + &% Armeria (HTTP/2)
- Keep using Tomcat via TomcatService for the legacy

Thrift served directly & asynchronously = No Tomcat overhead

- Armeria’s HTTP/2 client w/ load-balancing

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Case of LINE

averageResponseTime (line-shop-server : ServerStatistics : rpc-ShopService.getAggregatedShowCase : averageResponseTime : *)

300,000
(us)

250,000

200,000

150,000

100,000

50,000

14:00 14:10 14:20 14:30 14:40

14:50

themeshop

2016-02-01 15:04:00
48,396.338 / 1 min

15:00

15:10

* Asynchronification of 3 synchronous calls

wWearmeria_project €)line/armeria

15:20

15:30

15:40

https://twitter.com/armeria_project
https://github.com/line/armeria

Case of LINE

passiveConnectionOpenings (line-shop-server : network : tcp : passiveConnectionOpenings : *)

(# of conns)
800,000

700,000
600,000
500,000
400,000

300,000

sum
200,000 2015-12-18 17:01:00
2,171 / 1 min

100,000 |

o ' TN 4
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

* Significant reduction of inter-service connections

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Case of LINE

Services 4.907ms 9.813ms 14.720ms 19.626ms

8 shop-proxy 24.533ms : getproductv2

talk-server - 12.179ms : getuserinfobyaccesstoken

o shop-server 11.908ms : getproductv2

o stickershop-server . . . 8.697ms : getproductdetail

redis-cache . . - - 348pu: get

mysql-talk_stickershop . - . 501y : select

redis-cache

782y

& ownership-server . . . 5.235ms : getproductownership

mysql-talk_stickershop . . . 680u : select
mysql-talk_stickershop . . . 503y : select -

redis-cache

- Distributed tracing with 4\ ZIPKIN by just adding BraveService

* Full story: https://www.slideshare.net/linecorp/line-zipkin

24.533ms

set

91y :-get

https://twitter.com/armeria_project
https://github.com/line/armeria
https://www.slideshare.net/linecorp/line-zipkin

Case of @ kakaopay

Firm banking gateway

- Talking to Korean banks via VAN (value-added network)

= Kotlin + € Armeria
= Mostly non-null API
- Using @Nu Ll lab le annotation extensibly

Spring WebFlux + gRPC
Armeria Replaces Spring’s network layer (reactor-netty)
gRPC served directly = No WebFlux overhead

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Less points of failure

Client-side load-balancing

YWEarmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Load balancers - Reverse proxies

* Pros * Cons
- Distributes load - More points of failure
— Offloads TLS overhead - Increased hops - latency
- Automatic health checks - Uneven load distribution
— Service discovery (?) — Cost of operation

- Health check lags

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Client-side load balancing

* Client-side load balancing

- Chooses endpoints autonomously
- Service discovery — DNS, & kubernetes,

— Near real-time health checks

ZooKeeper, ...

Less points of failure

* Proxy-less Armeria server
- OpenSSL-based high-performance TLS
- . Netty + /dev/epoll

- Assemble your services into a single port + single JVM!

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

HTTP/2 load distribution at LINE

ey

o A \V’{? N/)[\
Y

\/ \‘\\X A /

17:00 17:05 17:10 1715 17:20 17:25 17:30 17:35 17:40 17:45 17:50 17:55 18:00 18:05 1810 1815 18:20 18:25 18:30 18:35 18:40 18:45 18:50 18:55 19:00 19:05 19:10 19115

* Full migration story:

https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria
-to-lines-authentication-system

wWearmeria project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria-to-lines-authentication-system
https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria-to-lines-authentication-system

Near real-time health check

* Leverage HTTP/2 + long-polling
- Significantly reduced number of health check requests, e.g. every 10s vs. 5m

- Immediate notification of health status

* Server considered unhealthy
- On disconnection

- On server notification, e.g. graceful shutdown, self-test failure

* Fully backwards-compatible

- Activated only when server responds with a special header

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Client-side load-balancing with
auto-retry and circuit breaker in 8 lines

// Kubernetes-style service discovery + long polling health check
EndpointGroup group = HealthCheckedEndpointGroup.of(
DnsServiceEndpointGroup.of("my-service.cluster.local"),
“/internal/healthcheck");
// Register the group into the registry.
EndpointGroupRegistry.register("myService", group, WEIGHTED_ROUND_ROBIN);
// Create an HTTP client with auto-retry and circuit breaker.
HttpClient client = HttpClient.builder("http://group:myService")
.decorator(RetryingHttpClient.newDecorator(onServerErrorStatus()))
.decorator(CircuitBreakerHttpClient.newDecorator(...))
build();
// Send a request.
HttpResponse res = client.get("/hello/armeria");

yWearmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Future work

Consider joining us!

YWEarmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

The road to 1.0 (and beyond)

Currently at 0.95
Hoping to release before the end of 2019

API stabilization - clean-up

Post-1.0

- Kotlin - Scala DSL - More decorators

- Evolving DocServiceto — More service discovery mechanisms
DashboardService

* Eureka, Consul, etcd, ...
— More transports & protocols

* Web Sockets, UNIX domain sockets, R
Netty handlers, ... - Performance optimization

— OpenAPI spec (.yml) generator

wWearmeria_project €)line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

Meet us at GitHub

Oanl

github.com/line/armeria
line.github.io/armeria

yW@Earmeria_project Oline/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria
https://line.github.io/armeria/

